p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.666C23, C8⋊2Q8⋊7C2, C8⋊C8⋊12C2, (C2×C8).35D4, C4.9(C4○D8), C8⋊5D4.13C2, C2.9(C8⋊3D4), C4.4(C8⋊C22), C4⋊Q8.90C22, (C4×C8).259C22, C4.SD16⋊38C2, C4.4D8.14C2, C2.9(C8.2D4), C4.4(C8.C22), C4⋊1D4.49C22, C2.14(C8.12D4), C22.67(C4⋊1D4), (C2×C4).723(C2×D4), SmallGroup(128,451)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.666C23
G = < a,b,c,d,e | a4=b4=c2=1, d2=a-1b2, e2=b, ab=ba, cac=a-1, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, dcd-1=a-1c, ece-1=b-1c, ede-1=a2d >
Subgroups: 240 in 93 conjugacy classes, 36 normal (24 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C42, C4⋊C4, C2×C8, SD16, C2×D4, C2×Q8, C4×C8, D4⋊C4, Q8⋊C4, C2.D8, C4⋊1D4, C4⋊Q8, C2×SD16, C8⋊C8, C4.4D8, C4.SD16, C8⋊5D4, C8⋊2Q8, C42.666C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4⋊1D4, C4○D8, C8⋊C22, C8.C22, C8.12D4, C8⋊3D4, C8.2D4, C42.666C23
Character table of C42.666C23
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | |
size | 1 | 1 | 1 | 1 | 16 | 2 | 2 | 2 | 2 | 2 | 2 | 16 | 16 | 16 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | -2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | -2 | 2 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 2 | -2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 0 | -2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 2 | -2 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 2 | -2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | √2 | √2 | -√-2 | √-2 | 0 | -√2 | √-2 | -2i | -√2 | -√-2 | 2i | 0 | complex lifted from C4○D8 |
ρ16 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -√2 | -√2 | √-2 | -√-2 | 0 | √2 | -√-2 | -2i | √2 | √-2 | 2i | 0 | complex lifted from C4○D8 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -√2 | -√2 | -√-2 | √-2 | 0 | √2 | √-2 | 2i | √2 | -√-2 | -2i | 0 | complex lifted from C4○D8 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | √2 | -√2 | √-2 | -√-2 | -2i | √2 | √-2 | 0 | -√2 | -√-2 | 0 | 2i | complex lifted from C4○D8 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -√2 | √2 | √-2 | -√-2 | 2i | -√2 | √-2 | 0 | √2 | -√-2 | 0 | -2i | complex lifted from C4○D8 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -√2 | √2 | -√-2 | √-2 | -2i | -√2 | -√-2 | 0 | √2 | √-2 | 0 | 2i | complex lifted from C4○D8 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | √2 | √2 | √-2 | -√-2 | 0 | -√2 | -√-2 | 2i | -√2 | √-2 | -2i | 0 | complex lifted from C4○D8 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | √2 | -√2 | -√-2 | √-2 | 2i | √2 | -√-2 | 0 | -√2 | √-2 | 0 | -2i | complex lifted from C4○D8 |
ρ23 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ24 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ25 | 4 | -4 | -4 | 4 | 0 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ26 | 4 | -4 | -4 | 4 | 0 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(1 24 5 20)(2 17 6 21)(3 18 7 22)(4 19 8 23)(9 45 13 41)(10 46 14 42)(11 47 15 43)(12 48 16 44)(25 49 29 53)(26 50 30 54)(27 51 31 55)(28 52 32 56)(33 62 37 58)(34 63 38 59)(35 64 39 60)(36 57 40 61)
(1 61 18 38)(2 62 19 39)(3 63 20 40)(4 64 21 33)(5 57 22 34)(6 58 23 35)(7 59 24 36)(8 60 17 37)(9 31 47 49)(10 32 48 50)(11 25 41 51)(12 26 42 52)(13 27 43 53)(14 28 44 54)(15 29 45 55)(16 30 46 56)
(2 17)(3 7)(4 23)(6 21)(8 19)(9 27)(10 52)(11 25)(12 50)(13 31)(14 56)(15 29)(16 54)(20 24)(26 48)(28 46)(30 44)(32 42)(33 35)(34 57)(36 63)(37 39)(38 61)(40 59)(41 51)(43 49)(45 55)(47 53)(58 64)(60 62)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 15 61 29 18 45 38 55)(2 12 62 26 19 42 39 52)(3 9 63 31 20 47 40 49)(4 14 64 28 21 44 33 54)(5 11 57 25 22 41 34 51)(6 16 58 30 23 46 35 56)(7 13 59 27 24 43 36 53)(8 10 60 32 17 48 37 50)
G:=sub<Sym(64)| (1,24,5,20)(2,17,6,21)(3,18,7,22)(4,19,8,23)(9,45,13,41)(10,46,14,42)(11,47,15,43)(12,48,16,44)(25,49,29,53)(26,50,30,54)(27,51,31,55)(28,52,32,56)(33,62,37,58)(34,63,38,59)(35,64,39,60)(36,57,40,61), (1,61,18,38)(2,62,19,39)(3,63,20,40)(4,64,21,33)(5,57,22,34)(6,58,23,35)(7,59,24,36)(8,60,17,37)(9,31,47,49)(10,32,48,50)(11,25,41,51)(12,26,42,52)(13,27,43,53)(14,28,44,54)(15,29,45,55)(16,30,46,56), (2,17)(3,7)(4,23)(6,21)(8,19)(9,27)(10,52)(11,25)(12,50)(13,31)(14,56)(15,29)(16,54)(20,24)(26,48)(28,46)(30,44)(32,42)(33,35)(34,57)(36,63)(37,39)(38,61)(40,59)(41,51)(43,49)(45,55)(47,53)(58,64)(60,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,15,61,29,18,45,38,55)(2,12,62,26,19,42,39,52)(3,9,63,31,20,47,40,49)(4,14,64,28,21,44,33,54)(5,11,57,25,22,41,34,51)(6,16,58,30,23,46,35,56)(7,13,59,27,24,43,36,53)(8,10,60,32,17,48,37,50)>;
G:=Group( (1,24,5,20)(2,17,6,21)(3,18,7,22)(4,19,8,23)(9,45,13,41)(10,46,14,42)(11,47,15,43)(12,48,16,44)(25,49,29,53)(26,50,30,54)(27,51,31,55)(28,52,32,56)(33,62,37,58)(34,63,38,59)(35,64,39,60)(36,57,40,61), (1,61,18,38)(2,62,19,39)(3,63,20,40)(4,64,21,33)(5,57,22,34)(6,58,23,35)(7,59,24,36)(8,60,17,37)(9,31,47,49)(10,32,48,50)(11,25,41,51)(12,26,42,52)(13,27,43,53)(14,28,44,54)(15,29,45,55)(16,30,46,56), (2,17)(3,7)(4,23)(6,21)(8,19)(9,27)(10,52)(11,25)(12,50)(13,31)(14,56)(15,29)(16,54)(20,24)(26,48)(28,46)(30,44)(32,42)(33,35)(34,57)(36,63)(37,39)(38,61)(40,59)(41,51)(43,49)(45,55)(47,53)(58,64)(60,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,15,61,29,18,45,38,55)(2,12,62,26,19,42,39,52)(3,9,63,31,20,47,40,49)(4,14,64,28,21,44,33,54)(5,11,57,25,22,41,34,51)(6,16,58,30,23,46,35,56)(7,13,59,27,24,43,36,53)(8,10,60,32,17,48,37,50) );
G=PermutationGroup([[(1,24,5,20),(2,17,6,21),(3,18,7,22),(4,19,8,23),(9,45,13,41),(10,46,14,42),(11,47,15,43),(12,48,16,44),(25,49,29,53),(26,50,30,54),(27,51,31,55),(28,52,32,56),(33,62,37,58),(34,63,38,59),(35,64,39,60),(36,57,40,61)], [(1,61,18,38),(2,62,19,39),(3,63,20,40),(4,64,21,33),(5,57,22,34),(6,58,23,35),(7,59,24,36),(8,60,17,37),(9,31,47,49),(10,32,48,50),(11,25,41,51),(12,26,42,52),(13,27,43,53),(14,28,44,54),(15,29,45,55),(16,30,46,56)], [(2,17),(3,7),(4,23),(6,21),(8,19),(9,27),(10,52),(11,25),(12,50),(13,31),(14,56),(15,29),(16,54),(20,24),(26,48),(28,46),(30,44),(32,42),(33,35),(34,57),(36,63),(37,39),(38,61),(40,59),(41,51),(43,49),(45,55),(47,53),(58,64),(60,62)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,15,61,29,18,45,38,55),(2,12,62,26,19,42,39,52),(3,9,63,31,20,47,40,49),(4,14,64,28,21,44,33,54),(5,11,57,25,22,41,34,51),(6,16,58,30,23,46,35,56),(7,13,59,27,24,43,36,53),(8,10,60,32,17,48,37,50)]])
Matrix representation of C42.666C23 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 15 | 0 | 0 | 0 | 0 |
1 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
1 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
4 | 9 | 0 | 0 | 0 | 0 |
4 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 5 | 0 | 0 |
0 | 0 | 12 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 12 |
0 | 0 | 0 | 0 | 5 | 12 |
0 | 10 | 0 | 0 | 0 | 0 |
12 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0],[1,1,0,0,0,0,15,16,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[1,1,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[4,4,0,0,0,0,9,13,0,0,0,0,0,0,5,12,0,0,0,0,5,5,0,0,0,0,0,0,12,5,0,0,0,0,12,12],[0,12,0,0,0,0,10,10,0,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0] >;
C42.666C23 in GAP, Magma, Sage, TeX
C_4^2._{666}C_2^3
% in TeX
G:=Group("C4^2.666C2^3");
// GroupNames label
G:=SmallGroup(128,451);
// by ID
G=gap.SmallGroup(128,451);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,141,736,422,387,100,1123,136,2804,172]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=c^2=1,d^2=a^-1*b^2,e^2=b,a*b=b*a,c*a*c=a^-1,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=a^-1*c,e*c*e^-1=b^-1*c,e*d*e^-1=a^2*d>;
// generators/relations
Export